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Abstract

Object detection ensembles can boost the generalization
performance of individual detection models. However, ex-
isting ensemble approaches suffer from two weaknesses: (i)
a larger number of component models is considered a better
ensemble, and (ii) the detection fusion methods for combin-
ing results mainly rely on non-maximum suppression (NMS)
techniques. This paper presents a focal diversity-optimized
object detection ensemble method, coined as ODEN, with
three original contributions. First, ODEN introduces the
concept of focal object detection diversity to capture the
negative correlations among multiple component object de-
tectors. A detection ensemble with a higher focal diver-
sity implies that its component models have higher failure
independence and can generalize better than the existing
NMS family of ensemble methods. Second, ODEN intro-
duces the focal diversity-optimized ensemble pruning al-
gorithm to produce top-K sub-ensembles from a pool of
object detection models to outperform the large ensemble
of all models. Third, the ODEN inconsistency solver can
resolve three types of inconsistency to combine detection
results from multiple object detectors. The joint optimiza-
tion of focal diversity pruning and robust detection fusion
makes the ODEN ensembles outperform the best individual
component model and the existing representative ensemble
methods. Extensive experiments conducted on three bench-
mark datasets show that ODEN can improve the detection
accuracy of existing ensemble methods by up to 9.33% un-
der benign scenarios and can boost the resilience of object
detection against representative adversarial attacks with up
to an 82.44% increase in the adversarial robustness.

1. Introduction

Powered by the recent advances in deep neural net-
works (DNNs), object detection has been widely deployed
in numerous applications, such as driving scene understand-
ing [9] and intruder detection [27]. These applications are
often mission-critical and hence impose a high demand on
DNN-based object detection algorithms to deliver higher
accuracy and stronger robustness.

Member Model Detection
ODEN (Ours)

Member 1 Member 2 Member 3

(a) A legitimate query

(b) A deceptive query

Table 1. Individual object detectors (1st to 3rd columns) can make
errors on a given query image due to their inherent weaknesses (a)
or evasion attacks (b). The diversity-driven ensemble ensures fail-
ure independence and creates opportunities for the inconsistency
solver to reconstruct correct detection (4th column).

This paper presents ODEN, a focal diversity-enhanced
ensemble framework for real-time object detection to en-
hance the generalization performance of DNN models for
high-quality inference. ODEN consists of two synergistic
functional components. First, the focal diversity-optimized
ensemble pruning produces sub-ensembles of high focal di-
versity (high failure independence) and a small ensemble
size with a low computational cost. Those sub-ensembles
are chosen from a pool of base DNN models using their fo-
cal detection diversity scores, having the property that an
ensemble with high focal diversity will result in high de-
tection performance. Second, the inconsistency solver pro-
duces robust ensemble detection by restoring inconsistent
detection results from multiple member models of an en-
semble. Unlike the ensemble of single-task learners such as
image classifiers [35], object detectors are multi-task learn-
ers [22], and ODEN has to deal with inconsistent detection
results on all three learning tasks from each ensemble mem-
ber model: object existence detection, bounding box loca-
tions of detected objects, and the classification of detected
objects and their confidence scores. These two complemen-
tary components strengthen the robustness of object detec-
tion, as demonstrated by visual examples in Table 1, hav-
ing an ensemble of three members with high focal diversity.

1
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Focusing on Table 1a, given the same query image from the
sensing device (e.g., a camera), each member model can
make mistakes due to its imperfect detection performance:
member 1 misdetected an extra bottle (1st column), mem-
ber 2 misclassified the motorbike as a bicycle (2nd column),
and member 3 could not recognize the person (3rd column).
As the employed ensemble is carefully selected by ODEN
with high focal diversity, the high failure independence en-
courages all members to make errors differently, which cre-
ates opportunities for the ODEN inconsistency solver to rec-
tify three levels of inconsistency and reconstruct the correct
detection results (4th column). The same idea also applies
to evasion attacks [5,15,25,28,32,36] (see Table 1b), which
have received much attention as a growing threat to intelli-
gent systems. They generate deceptive queries by injecting
human-imperceptible perturbations (note that images dis-
played in Table 1b are already perturbed by the state-of-
the-art attack named TOG [6]) to legitimate queries, aiming
to mislead high-quality object detection systems.

The contributions of this paper are as follows. First, we
introduce the concept of focal detection diversity to measure
the failure independence of member models of an ensemble
and propose a focal diversity-optimized ensemble pruning
method. Second, we present a robust inconsistency solver
to distill disagreeing predictions from member models of
an ensemble. We conduct extensive experiments with three
popular object detection benchmarks: MS COCO [16],
Open Images [14], and PASCAL VOC [8]. Our evalua-
tions show three significant results: (1) Object detection en-
sembles from ODEN consistently offer high mAP over the
best-performing member and improve the ensemble perfor-
mance by up to 9.33% in mAP compared to the existing
representative detection ensemble methods. (2) ODEN can
effectively select the top-performing sub-ensembles based
solely on their focal diversity scores, demonstrating the im-
portance of our focal diversity-optimized ensemble pruning.
(3) ODEN offers high resilience against four state-of-the-art
evasion attacks. The source code of ODEN is available at
[Anonymized].

2. ODEN Design Overview

2.1. Object Detection Ensemble

Given an input image x, a K-class object detection
model Fi, parameterized by ✓, generates a large num-
ber of candidate objects. Each object oi,j 2 Fi(x) is
associated with three perceptual predictions: (i) the es-
timated objectness Ji,j , indicating the probability of the
candidate being a real object, (ii) the predicted bound-
ing box bi,j = (bxmin

i,j
, b

ymin
i,j

, b
xmax
i,j

, b
ymax
i,j

), recorded by the
top-left and bottom-right corners of the object in the in-
put image, and (iii) the class probability vector pi,j =
(p1

i,j
, p

2
i,j
, ..., p

K

i,j
) indicating the object classification re-

sult with `i,j = arg max
1kK

p
k

i,j
being the class label and

ci,j = max
1kK

p
k

i,j
being the confidence. The detection re-

sult Fi(x) on the input image x is finalized by applying
confidence thresholding and non-maximum suppression to
discard those candidate objects with either low prediction
confidence or high overlapping with other candidates.

Based on the three prediction tasks, DNN-based object
detection can be formulated as a multi-task learning prob-
lem for a given training set D̃, minimizing the prediction
error of (i) objectness Lobj, (ii) bounding boxes Lbbox, and
(iii) class labels Lclass of objects, expressed by:

L(D̃;Fi,✓) = (x̃,G̃)2D̃[Lobj(x̃, G̃;Fi,✓)+

Lbbox(x̃, G̃;Fi,✓) + Lclass(x̃, G̃;Fi,✓)],
(1)

where x̃ and G̃ denote a training sample and its ground-truth
objects respectively. Then, the model parameters ✓ of the
deep object detector to be optimized are updated iteratively:
✓new = ✓ � ↵r✓L(D̃;F,✓) with a learning rate of ↵.

Let F = {F1, ..., FN} be an ensemble of N object de-
tection models. A query image x sent to the ensemble
F will be first dispatched to each of its N member mod-
els in parallel and obtain a set of predictions, denoted by
{Fi(x)|Fi 2 F }. The problem of an object detection en-
semble is to find a detection combination function E that
maps the collection of detection sets, one from each mem-
ber model of the ensemble, to a carefully-constructed set
of ensemble-detected objects that are as close as possible
to the ground-truth objects G̃ of the training image x̃ in a
training set D̃, i.e.,

min
(x̃,G̃)2D̃

||E(F1(x̃), ..., FN (x̃))� G̃||, (2)

where || · || denotes the difference between the ensemble-
detected objects and the ground truth.

2.2. Technical Challenges

Given a pool of N object detection models, while one
could employ all of them to form a large ensemble of N

members, the generalization performance might not be en-
hanced because some member models could echo the oth-
ers’ decisions and contribute no useful signal for inconsis-
tency evaluation. As to be shown in our experiments in Sec-
tion 5.1, a large ensemble team does not always provide the
best detection accuracy, and hence, we need to first inves-
tigate how to find sub-ensembles of strong synergies. With
sub-ensembles of size varying from 2 to N , we can obtain a
total of 2N � (N + 1) combinations. The first challenge is
determining the top-performing sub-ensembles among the
collection of all possible teams. We call this the ensemble
selection problem in ODEN.

Unlike an image classifier that outputs one classification
prediction for each input image, an object detector outputs

2
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Faster R-CNN YOLOv3

SSD

Chair 0.72

Chair 0.12

Cat 0.55

Cat 0.33

Person 0.99

Person 0.81

Bus 0.99

Bus 0.71

Bird 0.51

Train 0.82

= Partially
= Correct
= Detection

Figure 1. Three object detection models create different partially
correct results on the same input image. We need an inconsistency
solver to reconstruct correct decisions.

a set of detected objects. As a result, the detection combi-
nation algorithm E needs to calibrate the possibly incon-
sistent detection from multiple member detectors along all
three perceptual dimensions for every detected object re-
turned from a member detector of an ensemble. Hence, the
open problems include (i) different object detection mod-
els may return different numbers of detected objects on the
same query image, (ii) different object detectors may re-
turn different bounding boxes for the same entity (ground-
truth object) with varying locations and sizes, and (iii) for
the same ground-truth object, different detectors may return
predictions with different confidence scores. Figure 1 illus-
trates these open problems by combining detection results
from three object detection models. The ensemble takes a
query image of a typical driving scene and gets the detec-
tion results from three member models: four objects from
Faster R-CNN, three from YOLOv3, and three from SSD.
The second challenge is to find the resolution of which ob-
jects from different models refer to the same entity because
bounding boxes almost never align due to their regression
nature, and a large number of combinations can be possi-
ble (see the red lines) even for those detected objects whose
confidence scores are above the threshold.

3. Focal Diversity-based Ensemble Selection

Given a pool of N base models, we can formulateP
N

M=2

�
N

M

�
= 2N �(N+1) ensemble teams with the team

size M ranging from 2 to N . For instance, a 10-model pool
leads to 1, 013 teams, and the number of choices jumps ex-
ponentially to 1, 048, 555 when N = 20. In this section,
we first introduce the focal detection ensemble diversity
measure and then describe a focal diversity-based ensem-
ble selection algorithm, which shows that (i) the top sub-
ensembles of high focal diversity are the high-quality en-
sembles, outperforming the member model with the highest
mAP, and (ii) the top sub-ensembles tend to have a smaller
committee of highly diverse detectors from the base model
pool, which have high failure independence and outperform
the largest ensemble of all N models.

3.1. Focal Detection Ensemble Diversity

We adopt a focal model paradigm [4,35] for diversity as-
sessment. For each ensemble of size M , we consider each
of the M member models as a focal model to evaluate the
diversity of the ensemble based on the negative samples of
the focal model from a validation set. Thus, each ensemble
team of size M will have M focal diversity scores, one for
each of the M focal models. Finding negative samples of an
object detection model is non-trivial because it tends to de-
tect far more objects than those in the ground truth set and it
requires a confidence threshold to decide which ones to dis-
card. An inadequate decision on the threshold may result
in unnecessary false positives (too low) or false negatives
(too high). In light of this, we implement a ranking-based
approach for negative sample determination (Algorithm 1
in the appendix), which first sorts the detected objects of
the focal model in the descending order of their confidence
and finds a one-to-one mapping to the set of ground-truth
objects. The approach requires the correctly detected ob-
jects to have higher confidence than other irrelevant detec-
tion (i.e., no false positives), and all ground-truth objects
will be recognized (i.e., no false negatives).

Given an ensemble F of M models (M  N ), i.e.,
F = {F1, . . . , FM}, we compute M focal detection diver-
sity scores by considering each member as the focal model.
Given a focal model Ffocal, we obtain a set of negative
samples and measure the focal model-based disagreement
among the other M � 1 member models. In our proto-
type of ODEN, we measure the focal ensemble diversity
using the negative sample of the focal model by leveraging
the non-pairwise general disagreement defined in [21]. Let
Y denote a random variable representing the proportion of
models (i.e., i out of M ) that fail to recognize a random
input sample x defined in Algorithm 1. The probability of
Y = i

M
is denoted as pi. The focal diversity of an object

detection ensemble F = {F1, ..., Ffocal, ..., FM} of size M

w.r.t. the focal model Ffocal is defined as follows:

divfocal(F , Ffocal) = 1�
PM

i=1
i
M pi

PM
i=1

i(i�1)
M(M�1)pi

. (3)

divfocal is in the range of [0, 1] with the maximum diversity
score of 1 when the failure of one member model is accom-
panied by the correct recognition by the other.

3.2. Diversity-based Ensemble Pruning

Given a pool of N base models, say N = 10, by choos-
ing F1 as the focal model, we can compare all the sub-
ensembles of size M containing F1 as the focal model by
their focal diversity scores. For M = 5, we have a to-
tal of 126 sub-ensembles containing the focal model F1.
We can utilize the focal diversity measure divfocal(F , F1)
to partition this set into those sub-ensembles of high focal

3
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diversity and those with low diversity and select the top sub-
ensembles of highest focal diversity as our recommendation
for the top-performing ensemble teams. For a given focal
model Ffocal, we denote ⇤Ffocal,M as the set of sub-ensembles
of size M containing the focal model Ffocal. Using Equa-
tion 3, we measure the focal ensemble diversity of each sub-
ensemble and obtain the diversity-accuracy set, defined by
DA = {divfocal(F , Ffocal), ACC(F )) | F 2 ⇤Ffocal,M },
where ACC(·) returns the mAP using ODEN’s detection
combination algorithm to be described in Section 4. Each
member of the DA set represents a sub-ensemble team of
size M containing Ffocal. To identify those ensembles with
high focal diversity, we first define the initial centroid for
the cluster with high ensemble diversity using the maximum
diversity and the maximum accuracy of all sub-ensembles
in the DA set. Similarly, we initialize the second centroid
for the cluster with low focal diversity using the minimum
focal diversity and the lowest accuracy of ensembles in the
DA set. Then, we partition the DA set using a binary clus-
tering algorithm, such as K-Means, with the two specific
initial centroids. We use the largest diversity in the cluster
with low diversity as the cut-off threshold.

For each sub-ensemble of M member models, each of
the M models will be used as a focal model once, and thus
it will have M focal diversity scores. For example, the en-
semble F1,2,3 (i.e., a team with F1, F2, and F3 as mem-
bers) has three focal diversity scores: one in ⇤F1,3 with
F1 as the focal model, one in ⇤F2,3 with F2 as the fo-
cal model, and the third one in ⇤F3,3 with F3 as the fo-
cal model. Let HDEnsSetFfocal,M,F be the partition of
the sub-ensembles of size M with high focal diversity for
a given focal model Ffocal. We can use an affirmative or
unanimous vote to determine if an ensemble E of M mod-
els should be chosen as the recommended ensemble by our
focal diversity-based ensemble selection algorithm. Us-
ing the unanimous voting scheme (intersection), an ensem-
ble E is selected if E 2

T
N

i=1 HDEnsSetF focal
i ,M,F . Us-

ing affirmative voting (union), an ensemble E is selected if
E 2

S
N

i=1 HDEnsSetF focal
i ,M,F . Affirmative voting is used

as the default in the prototype of ODEN.

4. Robust Detection Combination

Having an ensemble of diverse object detectors is not
sufficient. An effective combination algorithm plays a
crucial role in complementing one member with others
and offers strong robustness. ODEN combines object de-
tection results from each member model of an ensemble
through three tiers of perceptual calibrations: First, it ex-
amines all the detected objects and partitions them into
class-based groups identifying which objects produced by
different member models refer to the same entity. Sec-
ond, it examines each detection group to perform bound-
ing box (BBox) calibration to produce the ensemble pre-

diction of the bounding box. Third, it generates the con-
fidence score for each ensemble prediction through group-
based confidence calibration with the ensemble size and the
fine-grained detection consistency. Figure 2 illustrates the
workflow of the three-phase ensemble detection calibration.

4.1. Candidate Detection Grouping

The goal of candidate detection grouping is to perform
entity resolution: It determines whether two detected ob-
jects from different member models refer to the same en-
tity and thus are associated based on (i) whether they are
detected with the same class label and (ii) whether their
BBoxes overlap significantly. The pseudocode is provided
in Algorithm 2 in the appendix.

Given a set of detection results from each of the N mem-
ber models in an ensemble, we first partition all detected
objects by their class label and sort the detected objects of
each class ` in the descending order of their prediction con-
fidence scores and produce a sorted list of detected objects
for each class `, denoted by G`. Second, we further partition
the sorted list G` into different groups. Each corresponds to
the same entity in the ground truth. Concretely, we first find
the detected object with the highest confidence in G` and
use it as the anchor prediction for the first group. Then,
we choose the next detected object oj 2 G` and assign it
to a group � if it satisfies the following conditions: (i) the
model detecting the object oj has not yet contributed any
detected object to the group �, and (ii) there is a signifi-
cant overlapping between the detected object oj and those
already in the group �. This process repeats until all de-
tected objects in the partition G` are examined and added to
a group. In ODEN, we introduce a system-supplied thresh-
old TIOU (e.g., 0.50) and define the significant overlapping
by checking if the overlapping measured by the intersec-
tion over union (IOU) is larger than the threshold TIOU. To
compare overlapping between the oj and those already in
the group �, we we generate the representative BBox of the
group � by averaging all BBoxes of the detected objects in
the group, weighted by their confidence scores and measure
the overlapping with it. We call it the weighted averaging
approach, denoted as �WA(oj ,�):

�WA(oj ,�) = IOU(bj ,
X

or2�

brcrP
oi2� ci

). (4)

If oj 2 G` has a significant overlapping with the group �
and the detector detecting oj has not yet made any contribu-
tion to the group �, then we add oj to the group. Otherwise,
we will create a new group with oj as the anchor detection.
The Phase 1 detection grouping repeats for each class until
all detected objects from the N member models of an en-
semble have been evaluated. The final result of Phase 1 is a
list of groups, denoted by �, where each group � 2 � con-
tains a set of detected objects of the same class label, each

4
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ODEN: Object Detection Ensemble

Candidate 
Detection Grouping

Per-Group 
BBox Calibration

Per-Group 
Confidence 
Calibration

Anchor 
Detection

Weighted 
Averaging Vote-to-

Calibrate
Learn-to-
Calibrate

Overlapping 
Lower Bound

Figure 2. The three-phase ensemble detection calibration framework in ODEN.

from a different member, and all recognize the same entity.

4.2. Per-Group BBox Calibration

The second phase of the ODEN inconsistency solver
takes the list � of groups from Phase 1 and performs per-
group-based bounding box calibration. Recall that although
different detectors often generate different bounding boxes
and different confidence scores for their detection, all de-
tected objects in each group � 2 � have the same class
label and correspond to the same entity. To generate the
ensemble detection results, each characterizes the delegate
object representing a group, we need to compute the ex-
act bounding box (location and size) and the confidence for
the ensemble detection by aggregating the BBoxes and the
different confidence scores of the detected objects in each
group in addition to the existence of the object of class `.
The former is carried out by group-based BBox calibration
in Phase 2, and the latter is performed by group-based con-
fidence calibration in Phase 3 in Section 4.3.

Based on how the group is composed, several approaches
can be employed to calibrate the bounding boxes of each
group � 2 �. If we use the anchor detection for grouping
in Phase 1 (i.e., �anchor), we can return the bounding box
banchor(�) of the anchor as the calibrated BBox. Alterna-
tively, if we use the overlapping lower bound �LB or the
weighted averaging �WA for grouping in Phase 1, we can
compute the BBox of the delegate object by aggregating the
bounding boxes of all detected objects in the group, each
is weighted by the confidence of the corresponding detec-
tion. Formally, the bounding box b̂ of the delegate object is
computed as follows:

b̂ =

✓P
oi2� bxmin

i ciP
oj2� cj

,

P
oi2� bymin

i ciP
oj2� cj

,

P
oi2� bxmax

i ciP
oj2� cj

,

P
oi2� bymax

i ciP
oj2� cj

◆
.

(5)
The confidence-weighted calibration of the bounding boxes
incorporates both the estimated location and size of each
bounding box and how certain the estimation is from each
corresponding member. We use this approach as the default
in our prototype of ODEN.

Recall that for an N -member ensemble, the goal of the
ensemble detection combination method is to combine the
detection results of the N member models to generate the
ensemble detection results. Let d̂ = [b̂, ˆ̀, ĉ] be an ensemble

detection result, representing the detected object of class ˆ̀

with bounding box b̂ and detection confidence ĉ. According
to the detection grouping in Phase 1, every group has a set
of the detected objects of one specific class. Upon the com-
pletion of Phase 2, for each group � 2 �, we also generated
the bounding box b̂ of the delegate object representing the
group. The final step is to compute the confidence for each
ensemble detection result d̂, which is the focus of Phase 3.

4.3. Per-Group Confidence Calibration

For a given ensemble F of N models, upon completing
the first two phases of the detection combination, we obtain
the list � of groups, and for each group � 2 �, we have the
class label ˆ̀ and the bounding box b̂ for the delegate object
representing the group. An intuitive approach to comput-
ing the confidence ĉ for the delegate object of each group is
to take the average of the confidence scores of the detected
objects in the group �: ĉ = 1

|�|
P

oi2� ci, where ci is the
confidence of the detected object oi in the group �. How-
ever, this approach does not consider the votes from differ-
ent member models of the ensemble and can work poorly
when the member models generate fake detection. Recall
Figure 1, all three models produce at least one fabricated
object (e.g., YOLOv3 incorrectly returns a train). These
fake objects do not overlap with one another, and each of
them will form a single-object group. If we use group-based
averaging for the confidence calibration, these fake objects
will be kept by the ensemble detection with high confidence
(e.g., 0.82 for the train).

One solution to this problem is to aggregate the confi-
dence scores of all the detected objects in the group � nor-
malized by the ensemble size N as ĉ = 1

N

P
oi2� ci. This

approach can be viewed as a refinement of the group-based
averaging method by adding the weight |�|

N
. If the group

� contains the detected objects from only a few member
models, the ensemble detection should be assigned low con-
fidence, reflecting that the delegate object representing the
group is less likely to correspond to a real entity compared
to another group supported by a larger number of member
models. This ensemble vote normalized method will effec-
tively reduce the confidence for those single-object groups
or the groups supported by only a few member models.

The third approach is learn-to-calibrate, which trains a
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model for confidence calibration using the validation data.
It is motivated by the observation that a group having the de-
tected objects of high confidence and high overlapping with
their bounding boxes is more likely to correspond to a real
entity compared to a group having objects of low confidence
and with marginally overlapping bounding boxes. Instead
of manually examining these statistics for all the groups on
each input image, in order to define the per-group confi-
dence calibration rules, the learn-to-calibrate approach will
first perform feature extraction for each group � to distill
useful perceptual properties from the group. Let Vc denote
the confidence vector of N elements for group �, each el-
ement denotes the confidence of the detected object from
a member model in the ensemble. Similarly, let VIOU de-
note the IOU vector of the group with N elements, each
element denotes the overlapping between the BBox of each
detected object in the group � and the BBox of the del-
egate object representing the group. Zero confidence and
IOU are assigned if a member does not contribute any de-
tected object to the group. We define the features extracted
for the group � as the concatenation of these two vectors:
⇥(�,F ) = Vc||VIOU. To learn how to calibrate the confi-
dence of the delegate object representing the group �, we
next train a model to estimate the probability of a given
group corresponding to a real entity in the ground truth, i.e.,
P (REAL = TRUE|⇥(�,F )). We employ logistic regres-
sion to estimate such a probability distribution and compute
the calibrated confidence ĉ:

ĉ =

P
oi2� ci

N(1 + exp(�(W⇥(�,F ) + b)))
, (6)

where the parameters W and b are learned using a valida-
tion set. The learn-to-calibrate is used as the default.

5. Experimental Evaluation

We conduct extensive experiments on three object de-
tection benchmarks: (i) MS COCO [16], (ii) Open Im-
ages [14], and (iii) PASCAL VOC [8]. Table 2 summa-
rizes the seventeen base models used in our experiments,
including their mAP [8], the best-performing model in each
dataset (the 2nd to the last row), and the average mAP of
each base model pool (the last row). We compare ODEN
with three popular methods for object detection fusion:
non-maximum weighted (NMW) [40], soft non-maximum
suppression (Soft-NMS) [2], and non-maximum suppres-
sion (NMS) [19]. Detailed setup is given in the appendix.

5.1. Benign Detection Performance Analysis

We first evaluate ODEN under benign scenarios with no
adversaries. Figure 3 compares ODEN with non-maximum
weighted (NMW), soft non-maximum suppression (Soft-
NMS), and non-maximum suppression (NMS) in terms of
benign mAP on three vision benchmarks. ODEN refers to

MS COCO Open Images PASCAL VOC

Model mAP Model mAP Model mAP

F1 SSD300-R 52.47 CRCNN 50.60 FRCNN 67.37
F2 SSD300-V 46.70 RetinaNet 51.99 SSD300 76.11
F3 SSD512-R 57.67 CRCNN-FPN 50.55 SSD512 79.83
F4 SSD512-V 55.81 MRCNN 49.14 YOLOv3-D 83.43
F5 SSD512-M 42.70 FRCNN 45.28 YOLOv3-M 71.84
F6 YOLOv3-D 67.91 - - - -
F7 YOLOv3-M 60.20 - - - -

Best YOLOv3-D 67.91 RetinaNet 51.99 YOLOv3-D 83.43
Avg. - 54.78 - 49.51 - 75.72

Table 2. A summary of base models for three benchmark datasets
in our experimental evaluation.

our ensemble with inconsistency solver and focal diversity
ensemble pruning turned on. The team with the highest fo-
cal diversity is F1,3,4,6,7 for MS COCO, F1,2,3,4 for PAS-
CAL VOC, and F1,2,3,5 for Open Images. To provide a
zoom-in comparison of ODEN with NMW, SoftNMS, and
NMS, which use the entire base model pool as the ensem-
ble, we also include ODEN (no-focal), which is the version
of ODEN that has the inconsistency solver but does not use
focal diversity-optimized ensemble pruning. Instead, the
entire pool of the base models is used as the ensemble team.
We make two observations. First, both ODEN and ODEN
(no-focal) significantly outperform existing approaches for
all benchmark datasets, and both provide better generaliza-
tion performance than the best-performing base model in
the pool. Second, compared to ODEN (no-focal), we show
that the generalization performance of ODEN can be fur-
ther strengthened by combining the detection inconsistency
solver with the focal diversity ensemble pruning. Table 3

provides two visual examples to compare ODEN (the 4th
column) with three existing baselines: NMW, SoftNMS,
and NMS (the 5th to 7th columns). We use the same ensem-
ble team of F2,3,4 on PASCAL VOC for a fair comparison.
It shows their effectiveness in resolving detection inconsis-
tency when combining partially correct decisions from in-
dividual member models (the 1st to 3rd columns).

Figure 4 shows a quantitative comparison with the same
team, where NMS and SoftNMS perform worse than the
best member (F5) with an mAP of 83.43%, and ODEN
reaches an ensemble mAP of 86.62%, having a 3.19% im-
provement. Such an observation can be made consistently
across all ensemble teams, meaning that ODEN can reach
detection quality higher than other approaches given the
same ensemble. For each dataset and its corresponding base
model pool, we evaluate all ensemble teams with at least
two members, resulting in 120 ensembles for MS COCO,
26 ensembles for Open Images, and 26 ensembles for PAS-
CAL VOC. Figure 5 reports the ensemble mAP of all teams
by comparing ODEN with three existing representative de-
tection combination methods. First, among the 172 teams
across three datasets, ODEN (red) consistently outperforms
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(a) MS COCO (b) PASCAL VOC (c) Open Images
Figure 3. ODEN outperforms three representative detection ensemble methods in benign mAP and the best-performing base model in the
respective pool marked by the horizontal line.

Member Model Detection Ensemble Detection F2,3,4

Member F2 Member F3 Member F4 ODEN NMW SoftNMS NMS

Table 3. Detection results on two test images by three member models and four ensemble methods using the same ensemble team F2,3,4.
ODEN inconsistency solver successfully removes false positives.

Ensemble F1,2,3,4,5,6,7 F1,2,3,4,6,7 F1,3,4,6,7 F1,3,6,7 F1,4,6

mAP 70.70% 71.32% 72.38% 72.19% 71.69%
mAP Gain 0% +0.62% +1.68% +1.49% +0.99%
Best M. F6(67.91%) F6(67.91%)F6(67.91%)F6(67.91%)F6(67.91%)
Best M. Gain +2.79% +3.41% +4.47% +4.28% +3.78%
Team Size 7 6 5 4 3
Cost 100% 86% 71% 57% 43%

(a) MS COCO
Ensemble F1,2,3,4,5 F1,2,3,5 F1,2,3

mAP 60.14% 61.09% 60.33%
mAP Gain 0% +0.95% +0.19%
Best M. F2(51.99%)F2(51.99%)F2(51.99%)
Best M. Gain +8.15% +9.10% +8.34%
Team Size 5 4 3
Cost 100% 80% 60%

(b) Open Images

Table 4. The teams selected by ODEN in MS COCO and Open
Images. The 4th and 6th rows compare the mAP gains of using
the selected ensembles compared to the ensemble composed of all
base models and the best mAP member model. The last two rows
show that the higher mAP of sub-ensembles can be achieved with
smaller ensemble team size and lower execution cost.

the three existing schemes (NMW in blue, Soft-NMS in
green, and NMS in orange) by a large margin. The im-
provement can be as large as 9.14% on MS COCO, 4.58%
on Open Images, and 6.05% on PASCAL VOC. Second, the
three existing representative methods for combining multi-
ple detections (i.e., NMW, Soft-NMS, and NMS) behave
similarly in terms of the ensemble mAP performance for
different teams, with NMW performing slightly better than
NMS and Soft-NMS being the worst among the three with
a marginally lower mAP for all three datasets.

Table 4 gives the top-k sub-ensembles with the high-
est diversity scores identified by ODEN on MS COCO and
Open Images. The 2nd column shows the teams using all

available models in the respective pool (i.e., the ODEN
(no-focal) in Figure 3). In such cases, the detection mAP
reaches 70.70% on MS COCO and 60.14% on Open Im-
ages. Ensembles with a smaller size can lead to a higher
mAP than the ensemble composed of all base models. For
example, the 5-member ensemble F1,3,4,6,7 on MS COCO
achieves an mAP of 72.38%, which is +4.47% higher than
the best member model and +1.68% higher than the en-
semble using all seven models, while the cost of ensemble
execution is only 71% compared with the ensemble using
all base models. Similar observations can be made in the
other two datasets.

5.2. Defensibility Under Evasion Attacks

We conduct experiments on PASCAL VOC using four
state-of-the-art evasion attacks: TOG [6], UEA [32],
RAP [15], and DAG [31]. We compare ODEN with three
ensemble defense methods (NMW, SoftNMS, and NMS)
and adversarial training (AdvDetTrain) [38]. We report the
comparison results in Table 5. F1 (i.e., FRCNN) is the vic-
tim model. We make three observations. First, ODEN out-
performs the other three ensemble approaches and the rep-
resentative adversarial training defense under all four eva-
sion attacks and benign scenarios (2nd column). Second, all
five ensemble methods significantly outperform the adver-
sarial training defense under all four evasion attacks and in
benign scenarios. Third, the ensemble methods NMW, Soft-
NMS, and NMS suffer severely under TOG evasion attack
with a low mAP of 13.41�17.56%, showing its poor defen-
sibility. In comparison, AdvDetTrain offers slightly better
defensibility under TOG attack (from 2.64% to 34.07%),
but the benign mAP drops significantly from 67.37% to
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Figure 4. ODEN improves mAP over
the best-performing member.

(a) MS COCO (b) Open Images (c) PASCAL VOC

Figure 5. Ensemble mAP comparisons for all possible teams with at least two members. With
the same ensemble, ODEN always achieve an ensemble mAP higher than the other approaches.

Benign

mAP (%)

Attack mAP (%)

TOG UEA RAP DAG

(a) No Protection

F1: FRCNN 67.37 2.64 18.07 4.78 3.56
(b) Protected

ODEN 86.77 81.47 58.97 84.67 86.00

NMW [40] 82.98 17.56 54.64 75.65 76.29
SoftNMS [2] 82.23 13.41 53.29 76.67 76.11
NMS [19] 82.15 16.86 54.08 75.02 76.01
AdvDetTrain [38] 35.99 34.07 17.67 35.60 35.58

Table 5. Defensibility comparison under four evasion attacks on
PASCAL VOC.

Figure 6. Computation time
analysis for detecting ob-
jects on an image.

NVIDIA 
Jetson

Intel Neural 
Compute Stick

Google 
Coral

Figure 7. The NCS [12] speedup
factor for running ODEN on the
edge.

35.99%. We provide the visualization of the defensibility
of ODEN against all four evasion attacks in the appendix.

5.3. Computation Time Analysis

We compare the average time spent to detect one query
image on PASCAL VOC in Figure 6 using ODEN, ODEN
(no-focal), NMW, SoftNMS, and NMS. This includes the
model inference and detection combination time in mil-
liseconds. Even though ODEN uses the focal diversity-
optimized ensemble, which is F1,2,3,4, instead of the ensem-
ble of all five detectors in the base model pool like the other
approaches, the computation time is comparable. This is
because all ensemble methods can run with parallel execu-
tion of all member models [34], as shown in Figure 7 with
Intel Neural Compute Stick 2 [12] on an edge node, demon-
strating the increased throughput. The computation time
is dominated by the slowest model (i.e., FRCNN), which
takes 55.56 milliseconds to compute. Comparatively, the
time spent on the ensemble detection inconsistency solver is
negligible: 3.60 milliseconds by ODEN, 3.65 milliseconds
by ODEN (no-focal), 2.15 milliseconds by NMW, 2.16 mil-
liseconds by SoftNMS, and 0.92 milliseconds by NMS.

6. Related Work

Neural network ensembles are known to provide better
generalization performance [10, 24]. Most of the existing
attempts have been made to create DNN ensembles for im-
age classifiers [17, 33]. In comparison, the DNN ensemble
for object detection has received much less attention in both
benign scenarios and under recent evasion attacks. Clearly,
the consensus with majority voting popularly used for clas-
sification ensembles is not applicable. It fails miserably
when dealing with detection inconsistency because differ-
ent detectors may detect different sets of objects in terms
of existence, the bounding box size and location of detected
objects, and their classification prediction and confidence.
NMS [19] and SoftNMS [2] are popularly used to merge
disagreeable bounding boxes in training a DNN object de-
tector. Hence, they are used as the baselines for comparison
with ODEN. NMW [40] and FUSE [3] are recent enhance-
ments for combining detection results from multiple detec-
tors. Both use a set of hand-picked models pre-trained us-
ing different NN backbones to compose an ensemble, where
FUSE uses SoftNMS and NMW uses soft-weighting to re-
compute the confidence for each detection. They do not
consider the factor of effective teaming to achieve better
performance, which can lead to the potential reduction in
computation cost. ODEN is a significant enhancement of
FUSE with two novel features: focal diversity-based en-
semble selection and a three-tier inconsistency solver for
robust detection combination.

7. Conclusions

We have presented ODEN, a principled approach to de-
signing and deploying object detection ensembles. ODEN
consists of two synergistic functional components: a focal
detection diversity-based ensemble selection algorithm and
a systematic ensemble detection calibration framework to
combine object detection results from multiple detectors.
ODEN can effectively identify ensembles with strong syn-
ergies and deliver ensemble mAP higher than any individual
member detector in the team and outperforms existing rep-
resentative approaches with higher adversarial robustness.
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